Bending of Rectangular Plates with Finite Deflections

FRANCES BAUER, LOUIS BAUER, WILLIAM BECKER
and EDWARD L. REISS

PREPARED UNDER
CONTRACT NONR-285(42)
WITH THE
OFFICE OF NAVAL RESEARCH
AND
CONTRACT AT(30-1)-1480
WITH THE U.S. ATOMIC ENERGY COMMISSION
New York University
Courant Institute of Mathematical Sciences

BENDING OF RECTANGULAR PLATES
WITH FINITE DEFORMATIONS

Frances Bauer, Louis Bauer, William Becker
and Edward L. Reiss

The research reported in this paper was performed under
Contract Nonr-285(42) with the Office of Naval Research,
U.S. Navy and under Contract AT(30-1)-1480 with the U.S.
Atomic Energy Commission. Reproduction in whole or in
part is permitted for any purpose of the United States
Government.
ABSTRACT

A previously developed iterative procedure is applied to obtain numerical solutions of the von Kármán equations for rectangular plates subjected to a uniform normal pressure. On the simply supported boundary it is assumed that the normal membrane stress and the tangential membrane displacement vanish. Solutions are obtained for a wide range of values of the loading parameter and the aspect ratio. Boundary layers develop both as the loading parameter and the aspect ratio increase. The stresses and deflections are examined and compared with an "asymptotic" solution which can be valid only in the interiors of long plates. A comparison is made with a previously obtained approximate solution by the Ritz method for the square plate.

1. Introduction

A thin, elastic rectangular plate is deformed by a uniform lateral pressure \(p \) applied normal to one face. The stresses and deflections predicted by the classical linear bending theory are valid only for a limited range of low pressures. For larger values of \(p \) it is necessary to employ nonlinear theories which allow for finite deflections and account for the interaction of membrane and bending effects. We employ the von Kármán plate theory [1] which is obtained from a nonlinear elasticity theory that permits small strains and small but finite displacements.
We consider the von Kármán equations as a coupled system of four second order partial differential equations. The four dependent variables are proportional to the normal displacement of the midsurface, the stress function and the Laplacians of these quantities. On the simply supported boundary it is assumed that the normal membrane stress and the tangential membrane displacement vanish. The stress strain and strain displacement relations of the von Kármán theory then imply that the four dependent variables vanish on the boundary. The solutions of this boundary value problem for the von Kármán equations depend on two parameters, the aspect ratio λ and a loading parameter P which is proportional to p.

In this paper, numerical solutions are obtained by an "accelerated" iteration method. It is analogous to one previously employed in studies of the nonlinear axisymmetric bending and buckling of circular plates [2] and the buckling of compressed rectangular plates [3]. Each iterate is determined as the solution of Dirichlet's problem for Poisson's equation on a rectangle. They are numerically evaluated by approximating the Dirichlet problem by corresponding difference equations. The resulting system of linear algebraic equations, which is of quasi-tridiagonal form, is solved by a factoring method [4]. The development of boundary layers is studied by obtaining solutions for a wide range of parameters.

The present results are compared with approximate solutions of a similar boundary value problem for the square plate obtained
by a Ritz method [5]. Other boundary conditions were employed in previous investigations of the nonlinear bending of rectangular plates. Approximate solutions were obtained by perturbation methods [6], energy methods [7], infinite series e.g. [8], and finite difference methods [9-11]. In these investigations relatively low values of P are considered and boundary layer phenomena are not studied. The finite difference procedures [9-11], which in some aspects are related to our method, employ relatively few mesh points.

2. Formulation

The rectangular plate of thickness t occupies the region: $0 \leq X \leq a$, $0 \leq Y \leq b$ and $|Z| \leq t/2$. It is deformed by a uniform pressure p applied normal to one face and directed in the positive Z direction. The displacements of the midsurface $Z=0$ in the X, Y and Z directions are denoted by $U(X,Y)$, $V(X,Y)$ and $W(X,Y)$. The membrane stresses are called $\sigma_x(X,Y)$, $\sigma_y(X,Y)$ and $\sigma_{xy}(X,Y)$.

The following dimensionless variables are defined by:

$$
x = X b^{-1}, \quad y = Y b^{-1}, \quad 0 \leq x \leq \ell \equiv a/b, \quad 0 \leq y \leq 1,
$$

$$
u(x,y) = c^2 b t^{-2} U(X,Y), \quad v(x,y) = c^2 b t^{-2} V(X,Y),
$$

$$
w(x,y) = c t^{-1} W(X,Y), \quad c^2 = 12(1 - v^2), \quad P = \frac{c^3}{E} \left(\frac{b}{t} \right)^4 p,
$$

$$
\Sigma_x(x,y) = \frac{c^2}{E} \left(\frac{b}{t} \right)^2 \sigma_x(X,Y), \quad \Sigma_y(x,y) = \frac{c^2}{E} \left(\frac{b}{t} \right)^2 \sigma_y(X,Y),
$$

$$
\Sigma_{xy}(x,y) = \frac{c^2}{E} \left(\frac{b}{t} \right)^2 \sigma_{xy}(X,Y),
$$
where ν is Poisson's ratio and E is Young's modulus. The stress function, $f(x,y)$, is defined in terms of the dimensionless membrane stresses Σ_x, Σ_y and Σ_{xy} by

$$
\Sigma_x = f_{,yy} \, , \, \Sigma_y = f_{,xx} \, , \, \Sigma_{xy} = -f_{,xy} .
$$

A comma denotes partial differentiation with respect to the subscripted variables following the comma.

The dimensionless membrane stresses are given in terms of the dimensionless displacements u, v and w by [1]

$$
\Sigma_x - \nu \Sigma_y = u_{,x} + \frac{1}{2} w_{,x}^2 \, , \, \Sigma_y - \nu \Sigma_x = v_{,y} + \frac{1}{2} w_{,y}^2 \, ,
$$

$$
\Sigma_{xy} = [2(1+\nu)]^{-1}(u_{,y} + v_{,x} + w_{,x} w_{,y}) .
$$

The moments M_x, M_y and M_{xy} and the corresponding dimensionless moments m_x, m_y and m_{xy} are given in terms of the dimensionless displacement, $w(x,y)$, by

$$
m_x(x,y) \equiv -\frac{c^3 b^2}{Et^4} M_x(X,Y) = w_{,xx} + vw_{,yy} ,
$$

$$
m_y(x,y) \equiv -\frac{c^3 b^2}{Et^4} M_y(X,Y) = w_{,yy} + vw_{,xx} ,
$$

$$
m_{xy}(x,y) \equiv \frac{c^3 b^2}{(1-\nu)Et^4} M_{xy}(X,Y) = w_{,xy} .
$$

The functions $\Omega(x,y)$ and $\phi(x,y)$ are defined by

$$
\Omega(x,y) \equiv \Delta w(x,y) \, , \, \phi(x,y) \equiv \Delta f(x,y) .
$$
where \triangle is the Laplacian with respect to x and y. Then the differential equations of the von Kármán theory can be written as

$$\triangle \phi = K[w] , \quad \triangle f = \phi ,$$

(2.6a)

$$\triangle \psi = P + H[w,f] , \quad \triangle w = \psi .$$

Here the functionals K and H are defined as

$$K[w] = w_{,xy}^2 - w_{,yy}w_{,xx} ,$$

(2.6b)

$$H[w,f] = f_{,yy}w_{,xx} + f_{,xx}w_{,yy} - 2f_{,xy}w_{,xy} .$$

On the boundary B of the rectangular region D, we require that

$$w = \triangle w = 0 ,$$

(2.7a)

$$f = \triangle f = 0 ,$$

(2.7b)

The conditions (2.7a) and (2.7b) imply that the boundary of the plate is simply supported. The boundary conditions (2.7b) imply, using (2.2) and (2.3), that along each edge of the boundary the normal stress vanishes and the tangential displacement is a constant which we take as zero.

The complete formulation of the boundary value problem consists of the differential equations (2.6) and the boundary conditions (2.7). The solutions depend on the two parameters
P and \(\ell \). When a solution \((w,f)\) is obtained the dimensionless stresses and moments are computed from (2.2) and (2.4). The displacements \(u \) and \(v \) are then determined from (2.3) using the condition that the tangential displacements vanish on the boundary.

3. Numerical Methods

Approximate solutions of the boundary value problem (2.6), (2.7) are obtained by an accelerated iteration procedure [3]. Thus, starting from an initial estimate \(w^{(0)}(x,y) \) of the solution for fixed \(P \) and \(\ell \), a sequence of iterates,
\[
[w^{(n)}(x,y), f^{(n)}(x,y), \gamma^{(n)}(x,y), w^{(n+1)}(x,y)],
\]
is defined by the recursions,
\[
\begin{align*}
\Delta \phi^{(n)} &= K[w^{(n)}], & \phi^{(n)} &= 0 \text{ on } B, \\
\Delta f^{(n)} &= \phi^{(n)}, & f^{(n)} &= 0 \text{ on } B, \\
\Delta \gamma^{(n)} &= P + H[w^{(n)}, f^{(n)}], & \gamma^{(n)} &= 0 \text{ on } B, \\
\Delta w^{(n+1)} &= \gamma^{(n)}, & w^{(n+1)} &= 0 \text{ on } B, \\
\end{align*}
\]
(3.1)

The acceleration parameter \(\theta \) is to be determined so that the iterations converge as rapidly as possible. Each iterate in (3.1) is thus determined as the solution of a linear boundary value problem of the form,
where \(c(x,y) \) is a known function on the rectangle \(D \). The solution \(g(x,y) \) of (3.2) is determined approximately using a difference method. To apply this method, \(D \) is covered by a uniform rectilinear net with spacing \(\delta \) in the \(x \) and \(y \) directions such that the boundary lines of \(D \) coincide with net lines. The net points \((x_i, y_j)\) are given by

\[
(3.3a) \quad x_i = i\delta, \quad y_j = j\delta, \quad i = 0,1,\ldots,M, \quad j = 0,1,\ldots,N,
\]

where

\[
(3.3b) \quad \delta = \ell / M = 1/N.
\]

At each net point \((x_i, y_j)\) interior to \(B \), it is assumed that the solution of (3.2), \(g(x_i, y_j) \), is approximated by the net function \(\{g_{ij}\} \) which satisfies the difference equations

\[
(3.4a) \quad \Delta g_{ij} = c_{ij}
\]

where

\[
(3.4b) \quad \Delta g_{ij} = \frac{1}{6\delta^2} \left[g_{i+1,j+1} + g_{i+1,j-1} + g_{i-1,j+1} + g_{i-1,j-1} - 4(g_{i,j+1} + g_{i,j-1} + g_{i+1,j} + g_{i-1,j}) - 20g_{i,j} \right]
\]

is the nine point Laplace difference operator \([12]\). The net functions \(\{c_{ij}\} \) in (3.4a) are obtained by replacing the second derivatives occurring in the right hand sides of (3.1) by
centered second difference approximations. The net function \(\{E_{ij}\} \) vanishes at each net point which lies on B.

The coefficient matrix of the \((M-1)\times(N-1)\) algebraic equations (3.4) is tridiagonal with respect to matrices or of quasi-tridiagonal form. This system is solved by factoring the matrix into the product of two matrices, one lower and one upper triangular with respect to matrices and then successively inverting the triangular systems \([4]\). The \(N-1\), \((M-1)\times(M-1)\) inverses that are thus required are obtained by Gauss elimination with pivotal condensation. For a fixed \(\delta\), these inverses are computed only once. Hence, only matrix multiplications of vectors and evaluations of the inhomogeneous terms in (3.1) are required to determine an iterate.

4. Computational Methods\(^*\)

The \(N-1\) inverses are stored in the internal or fast access memory, thus limiting the size of the net.\(^\dagger\) Hence for a square plate we are essentially limited to 625 interior net points \((\delta = 1/26)\) and for a rectangular plate with \(J = 2\) to 741 points \((\delta = 1/20)\). However, a sequence of test calculations with successively finer nets indicates that they are adequate for the range of P that we consider, see e.g. Table III below.

As an initial iterate we use, for any \(P\) and a fixed value

\(^*\)All computations were performed on the IBM-7090 and 7094 computers at the A.E.C. Computing and Applied Mathematics Center of the Courant Institute of Mathematical Sciences.

\(^\dagger\)Finer nets can be employed if tape storage is used. This considerably increases the computing time.
of \(\mathcal{I} \), the numerical solution for a neighboring value of \(P \). The first initial iterate is obtained for \(P \) near zero. Small pressures deform the plate slightly from the plane. Therefore, we take

\[
\{w_{ij}(0)\} = 0, \; i = 1, 2, \ldots, M-1, \; j = 1, 2, \ldots, N-1,
\]

and the iterations converge rapidly. The converged solution is then used as an initial iterate for slightly larger \(P \). In this manner numerical solutions are obtained for an increasing sequence of loads.

As a numerical convergence criterion we require

\[
R_n = \max_{1 \leq i \leq M-1} \left| \bar{w}_{ij}^{(n+1)} - \bar{w}_{ij}^{(n)} \right| < \varepsilon
\]

where \(\varepsilon > 0 \) is a prescribed "small" number. For the calculations, epsilons were in the range \(1 \times 10^{-9} < \varepsilon < 6.5 \times 10^{-6} \) and we usually employed the smallest \(\varepsilon \) consistent with the accuracy of the computational arithmetic. It should be noted that \(\lim_{n \to \infty} R_n = 0 \) is only a necessary condition for convergence. When the iterations have converged for specified values of \(P \) and \(\mathcal{I} \), the dimensionless stresses and moments are computed from difference equivalents of (2.2) and (2.4).

In general, the number of iterations necessary to satisfy (4.1) increases as \(P \) increases and depends on the value of \(\Theta \) used in (3.1). The optimal value of \(\Theta, \Theta_0 \), is defined as that
value of θ which, for a fixed P and ℓ, minimizes the number of iterations that are required to satisfy (4.1). Estimates of θ_0 are obtained from a series of test calculations with coarse meshes. The estimated θ_0 is found to decrease as P increases.

The number of iterations needed for convergence can be decreased if the acceleration parameter in (3.1) is allowed to vary with x and y. To illustrate this, numerical experiments were conducted for the square plate with $P = 100,000$. The converged solution for $P = 95,000$ was employed as the initial iterate and a sequence of calculations were made for the following choices of acceleration parameters: 1) $\theta = .033$ for all net points; 2) $\theta = .066$ at all points on a band around the edge one net line in from the boundary, $\theta = .033$ elsewhere; 3) $\theta = .066$ at all net points on a band around the edge consisting of the first two net lines in from the boundary, $\theta = .033$ elsewhere; 4) $\theta = .066$ at the four corner net points which are on a band one line in from the boundary, $\theta = .033$ elsewhere; 5) $\theta = .066$ at the same four corner net points and their two nearest interior net point neighbors, $\theta = .033$ elsewhere. The number of iterations needed for convergence for each of the five test calculations is summarized in Table I.

<table>
<thead>
<tr>
<th>Test Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Iterations</td>
<td>182</td>
<td>164</td>
<td>171</td>
<td>156</td>
<td>153</td>
</tr>
</tbody>
</table>
5. Presentation and Discussion of Results

Numerical solutions were obtained for square plates and a sequence of loads in the range $0 \leq P \leq 100,000$ and for rectangular plates with $\ell = 2$ and loads in the range $0 \leq P \leq 6,000$. Solutions were also obtained for plates with $\ell = 4, 5, 6, 8, 10$ and $P = 1,000$ and $2,000$. The final mesh widths that were employed for each ℓ are summarized in Table II.

<table>
<thead>
<tr>
<th>ℓ</th>
<th>1/6</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>26</td>
<td>20</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Only one numerical solution of the boundary value problem was determined for each P and ℓ considered. Each solution is symmetric with respect to the lines $x = \ell/2$ and $y = 1/2$.

To estimate the range of validity of the classical linear bending theory [13], the variation with P for "low" loads of the normal deflection of the plate's center is shown in Fig. 1. The graphs indicate that the central deflections predicted by the linear theory [13] deviate from those of the nonlinear theory, for example, for the square plate, by more than 10% if $P \geq 500$ and the difference increases rapidly with P.

* All calculations employed $\nu = .3$.

** This theory is obtained from (2.6a) and (2.7) by setting $H[w,f] = K[w] = 0$ in (2.6).
Representative graphs of the variation with x at $y = 1/2$ of dimensionless stresses and displacements are presented in Fig's. 2 for the square plate and an increasing sequence of loads. For convenience†, the results are shown for one half of the plate. The normal displacement, Fig. 2a, attains its maximum at the center for all loads considered. The plate "flattens" slightly at the center for the larger loads and the flattening effect increases as P increases. The formation of boundary layers as P increases is more evident in the graphs shown in Fig. 2b. For low loads $m_x(x , 1/2)$ attains its maximum at the center. For larger values of P there is a local minimum at the center. The maximum, which then occurs between the center and the edge, moves towards the edge as P increases. A similar boundary layer development occurs for the membrane stress Σ_y, see Fig. 2c. The variations of the shear stress Σ_{xy} and the twisting moment m_{xy} near the edge, i.e. at $y = 1/26$, are presented in Fig's. 3. The position of the maximum shear stress moves towards the corner as P increases which indicates the formation of boundary layers.

Boundary layers are found to form more rapidly and at lower loads for the rectangular plate with $l = 2$ than for the square plate.

To study the variations of the solutions with l, new variables are defined by

† Symmetry conditions imply that it is necessary to consider only one eighth of the square plate.
\begin{equation}
 x' \equiv x - \ell/2, \quad w'(x', y) = w(x' + \ell/2, y).
\end{equation}

In Fig's. 4, \(w'(0, y) \) and \(w'(x', l/2) \) are shown for \(P = 2000 \) and an increasing sequence of aspect ratios. The "asymptotic" solution, indicated by the dashed curves in Fig's. 4, is obtained by first substituting (5.1) into the boundary value problem (2.6) and (2.7) and then letting \(\ell \to \infty \). The limit plate is then contained in the infinite strip, \(|x'| < \infty, \ 0 \leq y \leq 1 \). The asymptotic solution, \(w_A(y) \), which is independent of \(x' \), is defined as the solution of the limiting boundary value problem and is found to be,

\begin{equation}
 w_A(y) = \frac{P\ell}{24}(y^3 - 2y^2 + 1), \quad f_A(y) \equiv 0.
\end{equation}

It does not satisfy all the boundary conditions (2.7) on \(x' = \pm \ell/2 \). Hence \(w_A \) may be an approximation to the solution of (2.6), (2.7) for "long" plates only away from the ends. More accurate approximations could be obtained by applying appropriate boundary layer methods.

A comparison is given in Table III for \(P = 92,656.1 \) of the center deflections \(w(1/2, 1/2) \) obtained from a four term Ritz calculation for the square plate [5] and those obtained by the present method for successively finer meshes.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Net Size & \(\delta = 1/26 \) & \(\delta = 1/12 \) & \(\delta = 1/6 \) & 4 Term Ritz[5] \\
\hline
w(1/2,1/2) & 22.6699 & 21.3592 & 18.9430 & 18.7195 \\
\hline
\end{tabular}
\caption{Table III}
\end{table}
Similar comparisons can be made for other loads. The maximum deviation between the Ritz results and the present ones for the finer mesh $\epsilon = 1/26$ is not at the center.
References

6. Chien, W. Z. and Yeh, K. Y., On the large deflection of rectangular plates, a manuscript which to the authors' knowledge has not been published.

Captions for Figures

Fig. 1. The variations with P of the normal deflections at the center of the square, $L = 1$, and rectangular plate, $L = 2$.

Fig. 2a. The variation of $w(x, l/2)$ with x for the square plate and an increasing sequence of values of P.

Fig. 2b. The variation of $m_x(x, l/2)$ with x for the square plate and an increasing sequence of values of P.

Fig. 2c. The variation of $2_y(x, l/2)$ with x for the square plate and an increasing sequence of values of P.

Fig. 3a. The variation of $2_{xy}(x, l/26)$ with x for the square plate and an increasing sequence of values of P.

Fig. 3b. The variation of $m_{xy}(x, l/26)$ with x for the square plate and an increasing sequence of values of P.

Fig. 4a. The variation of $w'(0, y)$ with y for an increasing sequence of values of L with $P = 2000$ and a comparison with the asymptotic solution $w_A(y)$, which is indicated by the dashed curve, see (5.1) and (5.2).

Fig. 4b. The variation of $w'(x', l/2)$ with x' for an increasing sequence of values of L with $P = 2000$ and a comparison with the asymptotic solution which is indicated by the dashed curve.
Figure 2a
Figure 2b
Figure 2c

\[\Sigma_y(x, 1/2) \times 10^{-2} \]

- \(P = 10^3 \)
- \(5 \times 10^4 \)
- \(10^4 \)
- \(10^3 \)

\[x \]

0 to 0.5
Figure 3a

\[-\Sigma_{xy}(x, l/26) \times 10^{-2}\]

- $P = 10^5$
- 5×10^4
- 10^4
- 10^3
Figure 3b
DISTRIBUTION LIST UNCLASSIFIED TECHNICAL REPORTS
issued under Contract Nonr-285(h2)

Chief of Staff, Dept. of Army
Washington 25, D.C.
Attn: Dev. Br. (R&D Div.) (1)
Res. Br. (R&D Div) (1)
Spec. Weapons Br. (R&D) (1)

Office of Chief of Engineers
Dept. of Army, Washington 25, D.C.
(1)
ENG-WD Plan Div. Div. Engrs. (1)

Fort Belvoir, Virginia (1)

Office of Chief of Ordnance
Dept. of Army, Washington 25, D.C.
Attn: Res. and Mat. Br., (Ord. R&D Div.) (1)

CO, Watertown Arsenal
Atertown, Massachusetts (1)

CO, Frankford Arsenal
Bridesburg Station
Philadelphia 37, Penna.
Attn: Lab. Div. (1)

Office of Ordnance Research
2127 Myrtle Dr., Duke Station
Durham, North Carolina (1)

CO, Squier Signal Lab.
Fort Monmouth, N.J.
Attn: Comp. and Mat. Br. (1)

Chief of Naval Operations
Dept. of Navy, Washington 25, D.C.
Attn: Op 37 (1)
Op 03EG (1)

Commandant, Marine Corps
Headquarters, USMC
Washington 25, D.C. (1)

Office of Chief Signal Officer
Dept. of Army, Washington 25, D.C.
Attn: Engin. and Techn. Div. (1)
Chief, Bureau of Ships
Dept. of Navy
Washington 25, D.C.
Attn: Code 106 (1)
Code 312 (5)
Code 320 (1)
Code 370 (1)
Code 375 (1)
Code 420 (1)
Code 421 (1)
Code 423 (2)
Code 425 (1)
Code 440 (1)
Code 442 (2)
Code 443 (1)
Code 525 (1)
Code 633 (1)

Commanding Officer and Director
David Taylor Model Basin
Washington 7, D.C.
Attn: Code 110 (1)
Code 600 (1)
Code 700 (1)
Code 720 (1)
Code 725 (1)
Code 731 (1)
Code 740 (2)

CO, U.S. Naval Ordnance Lab.
White Oak, Maryland
Attn: Techn. Library (2)
Techn. Eval. Dept. (1)

Director, Materials Lab.
N.Y. Naval Shipyard
Brooklyn 1, N.Y. (1)

CO, Portsmouth Naval Shipyard
Portsmouth, New Hampshire (2)

CO, Mare Island Nav. Shipyard
Vallejo, California (2)

CO and Director
San Diego 52, California (1)

Chief, Bureau of Aeronautics
Dept. of Navy
Washington 25, D.C.
Attn: AE4-1 (1)
AV-34 (1)
AD (1)
AD-2 (1)
E5-7 (1)
E5-8 (1)
Si (1)
AER-126 (1)

Chief, Bureau of Ordnance
Dept. of Navy
Washington 25, D.C.
Attn: Ad3 (1)
Re (1)
Res (1)
HeU (1)
Res5 (1)
Res1 (1)
Ren (1)

Dept. of Navy
Washington 25, D.C.
Attn: Missile Br. (2)

Chief, Bur. Yards and Docks
Dept. of Navy
Washington 25, D.C.
Attn: Code D-202 (1)
Code D-202.3 (1)
Code 220 (1)
Code D-222 (1)
Code D-410C (1)
Code D-440 (1)
Code D-500 (1)

CO, U.S. Nav. Proving Ground
Dahlgren, Virginia (1)

Supr. of Shipbuilding
USN and Nav. Inspect. of Ordnance
General Dynamics Corp.,
Groton, Connecticut (1)

Officer-in-Charge
Norfolk Naval Shipyard
Portsmouth, Virginia (2)

Dir., Nav. Air Experimental Sta.
Nav. Air Nat. Center, Nav. Base
Philadelphia 12, Penna.
Attn: Materials Lab. (1)
Structures Lab. (1)

Officer-in-Charge
Port Hueneme, California (2)

U.S. Nav. Constr. Battal. Center
Supr. of Shipbuilding
USN and Nav. Inspec. of Ordnance
Newport News Shipbuilding
and Dry Dock Co.
Newport News, Virginia (1)

Supr. of Shipbuilding
USN and Nav. Inspec. of Ordnance
Ingalls Shipbuilding Corp.
Pascagoula, Mississippi (1)

CO, U.S. Nav. Admin. Unit
MIT, Cambridge 39, Mass. (1)

Officer-in-Charge
Postgrad. School for
Naval Officers
Webb Inst. of Nav. Arch.
Crescent Beach Rd.
Glen Cove, L.I., N.Y. (1)

Supt., Nav. Gun Factory
Washington 25, D.C. (1)

Comm., Nav. Ordnance Test Sta.
China Lake, California
Attn: Physics Div.
Mechanics Div. (1)

CO, Nav. Ordnance Test Sta.
Underwater Ordnance Div.
3202 E. Foothill Blvd.
Pasadena 8, California
Attn: Struc. Div. (1)

CO and Director
U.S. Nav. Engin. Exp. Station
Annapolis, Maryland (1)

Monterey, California (1)

Comm. Marine Corps Schools
Quantico, Virginia
Attn: Dir., NC Dev. Center (1)

Comm Gen., USAF
Washington 25, D.C.
Attn: Res. and Dev. Div. (1)

CO, Air Materiel Command
Wright-Patterson AFB, Ohio
Attn: MCREX-B (1)
Structures Div. (1)

CO, USAF Inst. of Technology
Wright-Patterson AFB, Ohio
Attn: Chief, Appl. Mech. Group (1)

Director of Intelligence
Headquarters, USAF
Washington 25, D.C.
Attn: PV Br. (Air Targ. Div) (1)

CO, A.F. Office Sci. Research
Washington 25, D.C.
Attn: Mechanics Div. (1)

U.S. Atomic Energy Commission
Washington 25, D.C.
Attn: Dir. of Research (2)

Dir., Nat. Bur. of Standards
Washington 25, D.C.
Attn: Div. of Mechanics (1)
Engin. Mech. Sect. (1)
Aircraft Structures (1)

Comm., U.S. Coast Guard
1300 E. St., NW
Washington 25, D.C.
Attn: Chief, Test and Dev. Div. (1)

U.S. Maritime Administration
General Admin. Office Jldg.
141 G St., NW
Washington 25, D.C.
Attn: Chief, Div. Prelim. Design (1)

Nat. Aero. and Space Admin.
Langley Research Center
Langley Field, Virginia
Attn: Structures Div. (2)

Nat. Aero. and Space Admin.
1512 N St., NW
Washington 25, D.C.
Attn: Loads and Struc. Div. (2)

Director, Forest Prod. Lab.
Madison, Wisconsin (1)

Federal Aviation Agency
Dept. of Commerce
Washington 25, D.C.
Attn: Chief, Air Engin. Div. (1)
Chief, Air and Equip. Div. (1)

National Science Foundation
1520 13 St., NW
Washington, D.C. (1)

General Dynamic Corp.
Groton, Connecticut (1)
National Academy of Sciences
2101 Constitution Ave.,
Washington 25, D.C.
Attn: Dir., Comm. on Ships
Struc. Design
Exec. Secy., Comm. on
Undersea Warfare

Newport News Shipbuilding and
Dry Dock Co.
Newport News, Virginia

Ingalls Shipbuilding Corp.
Pascagoula, Mississippi

Prof. Lynn S. Beadle
Fritz Engineering Lab.
Lehigh University
Bethlehem, Penna.

Prof. R.L. Bisplinghoff
Dept. of Aero. Engineering
Massachusetts Inst. of Techn.
Cambridge 39, Massachusetts

Prof. H.I. Bleich
Dept. of Civ. Engineering
Columbia University
New York 27, New York

Prof. J.A. Boley
Dept. of Civ. Engineering
Columbia University
New York 27, New York

Dr. John F. Brahrtz
Southern California Labs
Stanford Research Institute
820 Mission St.
South Pasadena, California

Dr. D.O. Brush
Struc. Dept. 53-13
Lockheed Aircraft Corp.
Missile Syst. Div.
Sunnyvale, California

Prof. B. Budiansky
Dept. of Mech. Engineering
School Appl. Sciences
Harvard University
Cambridge 36, Massachusetts

Prof. Herbert Beresiewicz
Dept. of Civ. Engineering
Columbia University
632 W. 125th St.
New York 27, N.Y.

Prof. D.C. Drucker, Chmn.
Div. of Engineering
Brown University
Providence 12, Rhode Island

Prof. John Duberg
Dept. of Civ. Engineering
University of Illinois
Urbana, Illinois

Prof. J. Ericksen
Johns Hopkins University
Baltimore 18, Maryland

Prof. A.J. Kriening
Dept. of Aero Engineering
Purdue University
Lafayette, Indiana

Prof. W. Flugge
Dept. of Mech. Engineering
Stanford, California

Mr. M. Goland, VP and Dir.
Southwest Research Institute
8500 Culebra Rd.
San Antonio 6, Texas

Prof. J.N. Goodier
Dept. of Mech. Engineering
Stanford University
Stanford, California

Prof. L.I. Goodman
Engineering Experimental Sta.
University of Minnesota
Minneapolis, Minnesota

Prof. H. Hetenyi
The Technical Institute
Northwestern University
Evanston, Illinois

Prof. P.C. Hodge
Dept. of Mechanics
Illinois Inst. of Technology
Chicago 16, Illinois

Prof. N.J. Hoff, Head
Div. Aeronautical Engineering
Stanford University
Stanford, California

Prof. W.H. Hoppmann, II
Dept. of Mechanics
Rensselaer Polytechnic Inst.
Troy, New York
Prof. Bruce G. Johnston
University Of Michigan
Ann Arbor, Michigan (1)

Prof. J. Kempner
Dept. of Aero, Engineering and Appl. Mechanics
Polytechnic Inst. of Brooklyn
333 Jay St.
Brooklyn 1, N.Y. (1)

Prof. H.L. Langhaar
Dept. of Theoretical and Applied Mechanics
University of Illinois
Urbana, Illinois (1)

Prof. A.J. Lazan, Director Engineering Experimental Labs.
University of Minnesota
Minneapolis 14, Minnesota (1)

Prof. E.H. Lee
Div. of Appl. Mathematics
Brown University
Providence 12, Rhode Island (1)

Prof. George H. Lee, Dir. of Res.
Rensselaer Polytechnic Inst.
Troy, N.Y. (1)

Mr. S. Levy
3198 Chestnut St.
Philadelphia, Penna. (1)

Prof. Paul Lieber
Geology Department
University of California
Berkeley 4, California (1)

Prof. Joseph Marin, Head
Dept. Engineering Mechanics
College of Engin. and Arch.
Pennsylvania State University
University Park, Penna. (1)

Prof. A.D. Mindlin
Dept. of Civ. Engineering
Columbia University
632 W. 125th St.
New York 27, New York

Prof. Paul M. Naghdri
Building T-7
College of Engineering
University of California
Berkeley 4, California (1)

Prof. William A. Nash
Dept. of Engineering Mechanics
University of Florida
Gainesville, Florida (1)

Prof. M.H. Newmark, Head
Dept. of Civ. Engineering
University of Illinois
Urbana, Illinois (1)

Prof. E. Crowan
Dept. of Mech. Engineering
Massachusetts Institute of Techn.
Cambridge 39, Massachusetts (1)

Prof. A. Phillips
Dept. of Civ. Engineering
15 Prospect St.
Yale University
New Haven, Connecticut. (1)

Prof. L. Prager, Chmn.
Phys. ci. Council
Brown University
Providence 12, Rhode Island (1)

Prof. J.R.K. Radok
Dept. of Aero Engineering
and Appl. Mechanics
Polytechnic Inst. of Brooklyn
333 Jay St.
Brooklyn 1, N.Y. (1)

Prof. J.L. Reiss
Inst. of mathematical Sciences
New York University
4 Washington Place
New York 3, N.Y. (1)

Prof. L. Reissner
Dept. of Mathematics
Massachusetts Inst. of Technology
Cambridge 39, Massachusetts (1)

Prof. A.A. Sadovsky
Dept. of Mechanics
Rensselaer Polytechnic Inst.
Troy, New York

Prof. B.W. Shaffer
Dept. of Mech. Engineering
New York University
University Heights
New York 53, N.Y. (1)

Prof. J. Stallmeyer
Dept. of Civ. Engineering
University of Illinois
Urbana, Illinois (1)
Professor R.P. Harrington, Head
Dept. of Aeronautical Engineering
University of Cincinnati
Cincinnati 21, Ohio (1)

Professor Eugene J. Brunelle, Jr.
Dept. of Aeronautical Engineering
Princeton University
Princeton, New Jersey
N.Y.U. Courant Institute of Mathematical Sciences
4 Washington Place
New York 3, N. Y.